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Abstract

Here, we present a mechanistically grounded theory detailing a novel function of the behav-

ioral immune system (BIS), the psychological system that prompts pathogen avoidance

behaviors. We propose that BIS activity allows the body to downregulate basal inflamma-

tion, preventing resultant oxidative damage to DNA and promoting longevity. Study 1 inves-

tigated the relationship between a trait measure of pathogen avoidance motivation and in

vitro and in vivo proinflammatory cytokine production. Study 2 examined the relationship

between this same predictor and DNA damage often associated with prolonged inflamma-

tion. Results revealed that greater trait pathogen avoidance motivation predicts a) lower lev-

els of spontaneous (but not stimulated) proinflammatory cytokine release by peripheral

blood mononuclear cells (PBMCs), b) lower plasma levels of the proinflammatory cytokine

interleukin-6 (IL-6), and c) lower levels of oxidative DNA damage. Thus, the BIS may pro-

mote health by protecting the body from the deleterious effects of inflammation and oxida-

tive stress.

Introduction

Infectious diseases have long posed a survival threat to humans. As a result, humans have

evolved numerous defenses to combat them. One such defense is the immune system. The

immune system identifies pathogens within the body and responds by neutralizing and elimi-

nating them. However, activating this system is costly. When immune cells are stimulated,

they secrete a complex array of small molecular weight signaling proteins called cytokines that

promote inflammation, clear/prevent infections, and heal injuries [1]. Although inflammation

PLOS ONE | https://doi.org/10.1371/journal.pone.0203961 September 20, 2018 1 / 16

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Gassen J, Prokosch ML, Makhanova A,

Eimerbrink MJ, White JD, Proffitt Leyva RP, et al.

(2018) Behavioral immune system activity predicts

downregulation of chronic basal inflammation.

PLoS ONE 13(9): e0203961. https://doi.org/

10.1371/journal.pone.0203961

Editor: Wenyu Lin, Harvard Medical School,

UNITED STATES

Received: April 12, 2018

Accepted: August 30, 2018

Published: September 20, 2018

Copyright: © 2018 Gassen et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All data files are

submitted with the manuscript as supporting

information files and are available on the Open

Science Framework (DOI 10.17605/OSF.IO/

2KQM5).

Funding: This research was funded by the National

Science Foundation (BCS -1551201). The funders

had no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

http://orcid.org/0000-0002-8407-0131
http://orcid.org/0000-0002-9087-3328
https://doi.org/10.1371/journal.pone.0203961
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0203961&domain=pdf&date_stamp=2018-09-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0203961&domain=pdf&date_stamp=2018-09-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0203961&domain=pdf&date_stamp=2018-09-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0203961&domain=pdf&date_stamp=2018-09-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0203961&domain=pdf&date_stamp=2018-09-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0203961&domain=pdf&date_stamp=2018-09-20
https://doi.org/10.1371/journal.pone.0203961
https://doi.org/10.1371/journal.pone.0203961
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.17605/OSF.IO/2KQM5
https://doi.org/10.17605/OSF.IO/2KQM5


is critical for survival, the magnitude and duration of such events must be carefully regulated.

Excessive or prolonged inflammation is known to promote or exacerbate diseases of the car-

diovascular, metabolic, musculoskeletal, nervous, and immune systems [2]. Furthermore,

inflammatory processes–particularly when excessive or unresolved–induce oxidative stress

and reduce cellular antioxidant capacity [3–4], both of which promote aging and disease.

Given the costs of immune system activation, many organisms–including humans–also

employ behavioral tactics to reduce disease burden and prevent infection, such as engaging in

regular grooming [5], selectively foraging away from sites with a high pathogen load [6], and

avoiding sick conspecifics [7–8]. In humans, the system that motivates pathogen avoidance

behaviors is often referred to as the behavioral immune system (BIS) [9–10], or evolved patho-

gen avoidance system [11]. Such a system (henceforth the BIS) helps preclude the necessity of

mounting a costly immune response by promoting avoidance of the source of infection in the

first place. Here, we propose that–in addition to reducing infection risk and preventing the

costs associated with acute immune activation–the BIS also plays an important role in mini-

mizing basal inflammatory activity and preventing resultant oxidative stress.

The BIS is hypothesized to function by detecting disease-relevant cues in the environment

(e.g., seeing someone sneeze) and activating cognitions and behaviors that minimize one’s

contact with the source of infection. For example, environmental pathogen cues decrease peo-

ple’s desire to be near others and reduce interest in sexual behavior [12–14]. For most people,

pathogen avoidance programs such as these are only active when pathogen cues are salient

[10,13]. For others, however, disease concern and the motivation to avoid pathogens are

chronically high [14–16].

One of the most commonly used measures of individual differences in this construct is the

Perceived Vulnerability to Disease (PVD) scale [16]. The PVD scale consists of two subscales

capturing different facets of disease concern: the Perceived Infectability (PI) subscale and the

Germ Aversion (GA) subscale. The PI subscale measures beliefs about one’s personal suscepti-

bility to infectious disease (e.g., “If an illness is ‘going around,’ I will get it”). The GA subscale,

on the other hand, measures one’s pathogen avoidance motivation by assessing the extent to

which individuals feel discomfort in contexts connoting disease risk and are motivated to

engage in behaviors that reduce pathogen transmission (e.g., “I prefer to wash my hands pretty

soon after shaking someone’s hand” and “I am comfortable sharing a water bottle with a friend

[reverse-scored]”). Research finds that individuals high in GA report aversion to people and

objects that could act as potential pathogen vectors, even when obvious pathogen cues are

absent [10,15]. For example, lower levels of extraversion are found in those with higher trait

GA [16].

Many have speculated about the nature of the relationship between humans’ pathogen

avoidance psychology and the activities of the immune system [17–22]. However, to date, little

is known about how these variables are related to one another, if at all. Here, we propose that

the BIS may function, in part, to minimize the necessity of basal inflammatory activity by

decreasing pathogen contact. Specifically, we predicted that individuals who exhibit height-

ened pathogen avoidance motivation would have lower levels of non-targeted inflammation

(i.e., inflammation that occurs in the absence of overt immune stimulation) and diminished

resultant oxidative DNA damage.

We tested our hypothesis across two studies. In our first study, we examined the relation-

ship between a trait measure of pathogen avoidance motivation (i.e., the GA subscale of the

PVD scale) and indicators of non-targeted and targeted inflammatory tendencies, in vivo and

in vitro (using peripheral blood mononuclear cells [PBMCs]). We predicted that people

reporting greater motivation to avoid pathogen exposure would have less in vivo inflammatory

activity and less spontaneous proinflammatory cytokine release by PBMCs in the absence of
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immune stimulation. However, consistent with the idea that the BIS protects the body by

inhibiting non-targeted inflammation, but does not reflect low ability to mount a targeted

immune response to pathogens, we predicted no differences in cytokine release by PBMCs

after immune stimulation (i.e., targeted inflammation). Given that the PI subscale of the PVD

measures one’s perceived susceptibility to illness, but not necessarily their motivation to avoid

pathogen contact (as is captured by the GA subscale), we predicted that the PI subscale would

be unrelated to basal inflammation. Nonetheless, because PI may reflect the ability of an indi-

vidual’s immune system to prevent or recover from infectious illness–of which inflammation

plays an important role–we also tested for the effects of PI as a predictor in all models.

In our second study, we examined the link between the same trait measure of pathogen

avoidance motivation used in Study 1 and oxidative stress, a phenomenon known to result

from excessive inflammation [3–4]. The body’s inflammatory response, like other metaboli-

cally costly processes, is fueled by mitochondrial respiration and the generation of adenosine

triphosphate (ATP). These processes, in turn, increase reactive oxygen and nitrogen species

(ROS and RNS, respectively) [23]. Although ROS/RNS serve cellular antimicrobial functions,

they can also damage host DNA and contribute to diseases of aging [24–26]. Because we pro-

pose that the BIS reduces chronic basal inflammation–a key driver of ROS/RNS production–

we predicted that an active BIS (i.e., greater trait pathogen avoidance motivation) would be

associated with having lower levels of oxidative stress.

Study 1

Materials and methods

Participants. See S1 Table for characteristics of our sample. Sixty-two people participated

(38 men, 24 women; Mage = 18.97 years, SD = 1.28 [range: 18–24 years old]). We chose our

sample size based on the results of a pilot data collection (N = 16) that was completed six

months prior to the data collection for the current project. We used the results of this pilot

work to conduct an a priori power analysis using G�Power 3.1.5 [27] with alpha = .05 and the

smallest effect size: F2 = .21. Results indicated that a total sample size of 62 would be needed to

achieve .80 power to detect a relationship between our predictor and our weakest dependent

measure. Eligibility requirements included 1) being a non-smoker, 2) being without a history

of chronic medical or psychiatric disorders, 3) being non-obese [having a body mass index

(BMI) below 30], 4) not taking hormonal contraceptive pills [females], 5) being free from ill-

ness for the past two weeks, 6) abstaining from steroidal and non-steroidal anti-inflammatory

medications, exercise, and alcohol two days prior to the testing session, and 7) fasting the

morning of the session. All women were scheduled to participate 4–7 days after the first day of

their last menstrual period.

Procedure. Prior to data collection, the protocol for Study 1 was approved by Texas Chris-

tian University’s Institutional Review Board (approval #: 1411-117-1510AM). Written consent

was obtained from all participants prior to participation. All testing sessions began at 7:30 AM

after a minimum of an eight-hour fasting period. After completing questionnaires, including

the target measure of trait pathogen avoidance motivation, 85 mL of blood were drawn via

venipuncture into heparinized (or EDTA-containing) Vacutainer1 tubes (Becton-Dickinson,

Franklin Lakes, NJ). Finally, participants were thanked, debriefed, and compensated.

Pathogen avoidance motivation. To assess trait pathogen avoidance motivation, partici-

pants completed an established measure of this construct (Germ Aversion: GA) [16]. The GA

scale is comprised of eight questions that assess participants’ tendency to experience discom-

fort in situations associated with germ transmission and engage in behaviors that prevent

infection (α = .74). The GA scale is a subscale of the Perceived Vulnerability to Disease (PVD)
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scale, which also includes a second subscale, the Perceived Infectability scale (PI). This PI scale

assesses the degree to which individuals perceive themselves to be vulnerable to infection (α =

.93). We included both scales in our survey to help establish discriminant validity, predicting

that GA, but not PI would be associated with lower basal inflammation. Both subscales were

tested as separate predictors of our outcomes in each study.

Health and expected longevity. To assess participants’ health history, we asked them

questions about (a) their experiences with infectious illnesses in the last year (e.g. “How fre-

quently in the last year have you caught an illness from somebody else who was sick?” [scale: 1

–Never; 5 –All the Time]) and (b) their experience with more serious chronic health condi-

tions over their lifetime (e.g., diabetes). We measured participants’ expected longevity by ask-

ing “How likely are you to be alive at ages: 20–29?, 30–39?”, and so on, through “80 and

older?”. Participants indicated their responses on 7-point rating scales with the following

anchors: 1 –Very Unlikely; 7 –Very Likely.

Immunological parameters. First, we tested for systemic inflammatory activity in vivo by

examining plasma levels of the cytokine interleukin-6 (IL-6). Although functionally pleiotro-

pic, IL-6 is often elevated in those with inflammatory disorders and chronically high levels

contribute to diseases of aging [28–30]. Participant plasma was assayed in duplicate using

commercially available high-sensitivity enzyme-linked immunosorbent assay (ELISA) kits

(R&D Systems, Minneapolis, MN) with an assay range of 0.2–10 pg/mL.

Second, we isolated participants’ peripheral blood mononuclear cells (PBMCs), in vitro, to

examine participants’ cellular inflammatory tendencies in the presence and absence of

immune stimulation. PBMCs were isolated from whole blood through density gradient centri-

fugation in Ficoll1 Paque Plus (Sigma-Aldrich, St. Louis, MO; GE Healthcare Life Sciences,

Pittsburgh, PA). Cells were then washed several times in Hank’s Balanced Salt Solution (Cais-

son Labs, Logan, UT) to remove any extracellular signaling factors that may have been present

in participants’ whole blood. The cells were next counted and plated into FalconTM 96-well tis-

sue culture plates (Corning, Tewksbury, MA) in RPMI-1640 cell culture medium supple-

mented with 10% heat-inactivated fetal bovine serum, 2mM L-glutamine, 1mM sodium

pyruvate, 100 U of penicillin/mL, 100μg of streptomycin/mL, and 0.25μg of amphotericin B/

mL (Caisson Labs, Logan, UT) at a density of 2.5 x 105 cells/well, in a 200μL volume. PBMCs

were incubated for up to 3 days at 37˚C, 5% CO2, and 100% humidity, and cytokine produc-

tion was examined at 24, 48, and 72 hours after plating.

Participants’ PBMCs were plated in three testing conditions. In our target testing condition,

participants’ PBMCs were plated in cell culture medium only (i.e., in sterile conditions with no

immune challenge present). This was done to assess the chronic proinflammatory tendencies

of participants’ cells in the absence of overt immune stimulation (i.e., spontaneous release

[31]). Next, to assess the capacity of participants’ cells to respond adaptively to microbial/mito-

gen challenge, participants’ PBMCs were also plated with two different types of immune stim-

ulants: lipopolysaccharide (LPS) and phytohaemagglutinin (PHA). Specifically, PBMCs were

plated each with 1μg/mL of LPS serotype 026:B6, and, separately, with 5μg/mL of PHA.

We assessed release of three key proinflammatory cytokines at each of three time-points

(24, 48, and 72 hours after plating) in each of three plating conditions (media-only, LPS, and

PHA). The cytokines measured were interleukin (IL)-1β, IL-6, and tumor necrosis factor

(TNF)-α, a trio of proinflammatory cytokines frequently produced following exposure to a

wide range of pathogens in vivo [32]. Cell culture supernatants were assayed in duplicate using

commercially available MILLIPLEX1 MAP Human Cytokine Panel magnetic bead kits

(EMD Millipore Corporation, Billerica, MA) with minimum detectable concentrations of 0.9

pg/mL (IL-6), 0.8 pg/mL (IL-1β), and 0.7 pg/mL (TNF-α), and an upper limit of 10,000 pg/mL

for each cytokine. Plates were read using a Luminex MAGPIX1 fluorescent detection system
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(Luminex, Austin, TX) and xPONENT1 software (Version 4.2; build: 1324; Luminex, Austin,

TX).

Alternative explanations. We assessed several other variables to help rule out alternative

explanations for any associations we found between pathogen avoidance motivation and

inflammatory markers. Specifically, we took measures of a series of demographic (age, ethnic-

ity, gender, childhood socioeconomic status [SES]), biobehavioral (total adiposity, physical

activity, sleep), and biosocial (stress) factors known to covary with, or directly modulate,

inflammatory processes [33] and potentially impact pathogen avoidance motivation. Child-

hood SES was measured using an established three-item measure of this construct [34] and

was also indexed by the highest educational degree earned by the participants’ mother or

father. Adiposity was measured as body mass index (BMI; kg/m2), physical activity was mea-

sured by asking participants “How would you describe your regular level of activity or exer-

cise?”, sleep was measured by asking participants to report on the number of hours of sleep

they had gotten the night before the testing session, and stress was measured using the Per-

ceived Stress Scale (PSS) [35].

Results

See Data Analytic Plan in S1 Text for full data analysis plan. To examine whether trait-level dif-

ferences in pathogen avoidance motivation predict lower levels of non-targeted inflammation,

we conducted a series of statistical models to test the association between scores on the GA

scale and in vitro and in vivo proinflammatory cytokine production.

For our in vitro cytokine production data, we used three-level hierarchical linear modeling

(HLM software; version 6.06 [36]) to test whether pathogen avoidance motivation predicts

PBMC release of IL-6, IL-1β, and TNF-α at 24 hours, 48 hours, and 72 hours post-plating, in

three separate plating conditions: (a) in a resting state (spontaneous release), (b) in response to

LPS, and (c) in response to PHA. HLM is appropriate for these data, as time-points of cytokine

release (Level 1: 24, 48, 72 hrs.) were nested within plating condition (Level 2: media-only,

LPS, PHA), which were themselves nested within individuals (Level 3). Separate models were

built using each cytokine as the dependent measure. We were primarily interested in examin-

ing whether a cross-level interaction between pathogen avoidance motivation–an individual-

level variable–and plating condition predicted release of each cytokine.

See Table 1 for descriptive statistics. Results for in vitro IL-6 release by PBMCs revealed that

higher trait levels of pathogen avoidance motivation predicted lower spontaneous release of

this cytokine, B = -.35 (SE = .16), t = -2.22, p = .03. Specifically, each unit increase in trait path-

ogen avoidance motivation predicted an average .35 unit reduction in IL-6 release in the

absence of immune stimulation. As hypothesized, pathogen avoidance motivation did not pre-

dict IL-6 release in response to either type of immune stimulation (LPS: B = -.01, p = .61; PHA:

B = -.01, p = .67; Fig 1).

The results for TNF-α replicated the pattern observed for IL-6 (Fig 2). Higher trait levels of

pathogen avoidance motivation predicted lower levels of spontaneous TNF-α release, B = -.32

(SE = .11), t = -2.93, p = .005. Specifically, each unit increase in trait pathogen avoidance moti-

vation predicted a .32 unit decrease in TNF-α release. As with IL-6, trait pathogen avoidance

motivation did not predict TNF-α release in response to immune stimulation (LPS: B = -.05,

p = .29; PHA: B = -.01, p = .74).

Consistent with the findings for IL-6 and TNF-α, higher trait levels of pathogen avoidance

motivation predicted lesser spontaneous IL-1β release, B = -.20 (SE = .09), t = -2.24, p = .03.

Each unit increase in trait pathogen avoidance motivation predicted a .20 unit reduction in IL-

1β (Fig 3). However, unlike the results observed for IL-6 and TNF-α, this slope was not

The behavioral immune system and basal inflammation
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Table 1. Descriptive statistics for Study 1 (N = 62).

Measures M (SD)

Self-Report Measures

Germ Aversion 3.77 (1.03)

Perceived Infectability 3.09 (1.23)

Expected Longevity 6.67 (.38)

Health History 1.18 (1.48)

Infection in Past Year 2.19 (.53)

Plasma Cytokine Levels

Plasma IL-6 .97 (1.10)

Spontaneous Cytokine Release

IL-1β Release 33.61 (163.45)

IL-6 Release 389.85 (1252.89)

TNF-α Release 70.21 (200.71)

LPS-Stimulated Cytokine Release

IL-1β Release 3256.64 (3496.16)

IL-6 Release 6480.22 (2231.54)

TNF-α Release 2410.28 (1568.42)

PHA-Stimulated Cytokine Release

IL-1β Release 1588.42 (2522.01)

IL-6 Release 6046.18 (1993.44)

TNF-α Release 2016.93 (1422.20)

Note. Cytokine levels shown here as raw values in pg/mL averaged across time points. All cytokine measures were

log-transformed prior to analysis. IL-1β = interleukin-1 beta; IL-6 = interleukin-6; TNF-α = tumor necrosis factor

alpha.

https://doi.org/10.1371/journal.pone.0203961.t001

Fig 1. Interaction between GA and plating condition on IL-6 release. Relationship between pathogen avoidance motivation measured

by germ aversion (GA) and in vitro IL-6 release collapsed across time-points (Study 1). High GA reflects high pathogen avoidance

motivation, while higher levels of IL-6 release indicate greater inflammation. IL-6 values were natural log-transformed prior to analysis.

https://doi.org/10.1371/journal.pone.0203961.g001
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Fig 2. Interaction between GA and plating condition on TNF-α release. Relationship between pathogen avoidance motivation

measured using the Germ Aversion (GA) scale and in vitro release of TNF-α collapsed across time points (Study 1). High GA

means high pathogen avoidance motivation, while higher levels of TNF-α release reflect greater inflammation. TNF-α values were

natural log-transformed prior to analysis.

https://doi.org/10.1371/journal.pone.0203961.g002

Fig 3. Interaction between GA and plating condition on IL-1β release. Relationship between pathogen avoidance motivation

measured using the Germ Aversion (GA) scale and in vitro release of IL-1β collapsed across time points (Study 1). High GA represents

high pathogen avoidance motivation, while higher levels of IL-1β release indicate more inflammation. IL-1β values were natural log-

transformed prior to analysis.

https://doi.org/10.1371/journal.pone.0203961.g003
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significantly different than those found in the LPS (B = .10, p = .38) or PHA (B = .11, p = .33)

conditions, such that pathogen avoidance motivation appeared to predict less IL-1β release

both in the presence and absence of immune stimulation. Similar to the results for IL-6 and

TNF-α, the negative slope of trait pathogen avoidance motivation was again steeper in the

spontaneous release condition compared to either stimulated release condition. In the case of

IL-1β, however, the difference in slopes did not reach statistical significance.

We then followed up our target models with two alternative sets of HLM models. First, we

tested whether the results of our primary model were robust to controlling for variables known

to influence inflammation, pathogen avoidance motivation, or both. Next, we examined

whether effects similar to those found for trait pathogen avoidance motivation were also found

for the degree to which participants perceived themselves to be susceptible to illnesses (mea-

sured using the PI subscale of the PVD scale). Results revealed that controlling for stress, sleep,

age, exercise, BMI, gender, race, childhood SES, and parent education level did not change the

pattern or significance of the relationships between trait levels of pathogen avoidance motiva-

tion and spontaneous proinflammatory cytokine release by PBMCs (all ps< .05). Further,

although relationships between one’s perceived susceptibility to illness (PI) and in vitro cytokine

release resembled those found for GA, PI did not emerge as a significant predictor of cytokine

release in the media-only condition (ps> .09; see Alternative Models in S1 Text).

Next, to test the relationship between trait levels of pathogen avoidance motivation, in vivo
levels of IL-6, and factors related to health and longevity, we examined bivariate correlations

between GA and participants’ (a) recent experiences with infectious illnesses, (b) history of

medical problems, (c) expected longevity, (d) plasma IL-6, and (e) demographic, biobehavioral,

and biosocial factors known to impact each (Table 2). Results revealed that trait pathogen avoid-

ance motivation was negatively related to in vivo IL-6 levels and participants’ history of medical

problems, but positively correlated with expected longevity. There was no significant relation-

ship between trait levels of pathogen avoidance motivation and participants’ experiences with

infectious illnesses in the last year. Importantly, all relationships held when controlling for

stress, sleep, age, exercise, BMI, gender, race, childhood SES, and parent education level.

Table 2. Correlations between BIS activity, Serum IL-6, demographic variables, and health.

Germ Aversion Plasma IL-6 Expected Longevity Illnesses in Last Year Medical Problems Perceived Infectability

Gender .14 -.06 .10 .12 -.14 .07

Race .13 .002 -.06 .16 .17 .04

Age -.03 -.19 .17 -.20 -.10 -.19

Childhood SES -.01 -.05 .14 -.15 -.10 -.20

Mother Education -.16 .05 .02 -.17 .08 -.17

Father Education -.19 .05 .004 -.06 -.05 .07

Sleep .06 .18 .23† -.18 .13 -.05

Physical Activity -.12 .13 .09 -.20 .09 -.27�

BMI -.27� .11 -.19 -.19 -.09 -.28�

Stress .19 -.18 -.23 .45��� -.03 .32��

Perceived Infectability .20 .15 -.12 .66��� .11

History of Medical Problems -.29� .08 -.30� .10

Illnesses in Last Year .13 .07 -.22

Expected Longevity .41��� -.10

Plasma IL-6 -.30�

Note. † indicates marginal significance at p� .07, indicates significance at �p� .05, ��p� .01, and ���p� .001.

https://doi.org/10.1371/journal.pone.0203961.t002
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Finally, we combined our results into a single structural equation model (SEM; MPlus 7.4

statistical software [37]; see Fig 4 for model) by simultaneously regressing spontaneous cyto-

kine release by PBMCs across time (cytokines presented together clustered within participant;

see Data Analytic Plan in S1 Text), LPS-stimulated cytokine release by PBMCs across time,

PHA-stimulated cytokine release across time, and plasma IL-6 on GA, our trait measure of

pathogen avoidance motivation. Results supported the findings from the HLM models and

bivariate correlations. Higher trait levels of pathogen avoidance motivation significantly pre-

dicted lower levels of spontaneous cytokine release by PBMCs, β = -.33, SE = .14, t = -2.34, p =

.02, R2 = .11, as well as lower levels of plasma IL-6, β = -.30, SE = .11, t = -2.76, p = .006, R2 =

.09. However, trait levels of pathogen avoidance motivation did not significantly predict stimu-

lated cytokine release in response to either LPS, β = -.13, SE = .11, t = -1.28, p = .20, R2 = .02, or

PHA, β = -.07, SE = .07, t = -1.07, p = .29, R2 = .01.

The results of our first study supported the hypothesis that BIS activity allows the body to

downregulate basal inflammation. As predicted, higher trait levels of pathogen avoidance

motivation were associated with lower levels of plasma IL-6, and less spontaneous (but not

stimulated) release of proinflammatory cytokines by PBMCs. Additionally, results revealed

that higher levels of pathogen avoidance motivation were predictive of increased perceived

longevity, but not decreased illness over the last year. This result is consistent with the view

that pathogen avoidance motivation may offer an alternate, but similarly effective, route to

avoiding infection, without the costs of inflammatory activity.

Study 2

In our second study, we examined whether higher trait levels of pathogen avoidance motivation

were associated with less oxidative DNA damage–a frequent product of chronic inflammation

[3–4]–as quantified via a key indicator of oxidative DNA base damage, 8-hydroxyguanine

(8-OHdG).

Materials and methods

Participants. See S2 Table for characteristics of our sample. Participants were recruited

via flyers, Facebook advertising, handouts at a local medical clinic, and emails sent to couples

Fig 4. Structural equation model summarizing relationships between GA and inflammation. Structural equation model shown with standardized estimates.

Dotted lines denote non-significant paths. Trait pathogen avoidance motivation measured by Germ Aversion (GA). ��p< .01; �p< .05.

https://doi.org/10.1371/journal.pone.0203961.g004
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participating in a separate longitudinal study of married couples. This yielded a total sample of

193 women (Mage = 28.56 years, SD = 5.59 [range: 18–40 years old]). Given the goals of the

larger study from which these data were drawn, 91 of these women were pregnant. Sample size

was determined based on the goals of the larger study. Participants were primarily of European

descent and generally came from educated, middle-class backgrounds.

Procedure. Prior to data collection, the protocol for Study 2 was approved by Florida

State University’s Institutional Review Board (approval #: 2014.13055). All research sessions

were conducted in person and written consent was obtained from all participants prior to par-

ticipation. An undergraduate female research assistant met eligible women at one of three

locations: a community location (e.g., coffee shop), the participant’s home, or the research lab.

Each setting had a bathroom, where urine samples could be collected privately.

Upon arriving at the appointment, participants provided informed consent and then com-

pleted a paper-based survey assessing a variety of social and individual differences, including

the same trait measure of pathogen avoidance motivation used in Study 1. Next, participants

provided a urine sample using sterile cups that were collected by the research assistant. Finally,

participants were thanked, debriefed, and compensated.

Pathogen avoidance motivation. As in Study 1, trait pathogen avoidance motivation was

measured using the GA scale. We again included the PI scale to test for discriminant validity.

Internal consistency of each subscale was acceptable (for GA, α = .70; for PI, α = .90).

Oxidative stress assay. To assay oxidative stress, we followed the procedure described by

Griskevicius and colleagues [38]. Immediately after research assistants returned to the lab, they

pipetted the urine samples into aliquots (200uL for the 8-hydroxyguanine [8-OHdG] assay;

20uL for creatinine assay) that were then frozen at -20˚C until all samples were collected. We

measured 8-OHdG using the High Sensitivity 8-OHdG ELISA kit manufactured by the Japan

Institute for the Control of Aging, purchased through Genox (Baltimore, MD). 8-OHdG–which

is commonly assessed in urine–is one of the predominant forms of oxidative lesion to nuclear

or mitochondrial DNA and an important biomarker for oxidative stress and somatic damage

[39–40]. Sensitivity of this assay was approximately 0.125–10 ng/mL. To account for differences

in urine concentration, all 8-OHdG values were corrected for creatinine. Creatinine assays were

conducted using a colorimetric detection kit (Enzo Life Sciences; Farmingdale, NY). Creatinine

values ranged from 12.84 mg/dL to 302.38 mg/dL. Following these procedures, we obtained reli-

able values of 8-OHdG corrected for creatinine for 165 (85%) of the participants. Specifically,

we could not obtain reliable scores for 14 samples, due to low quantities or high variability

between duplicates. For three additional samples, creatinine could not be determined. Finally,

one participant’s sample was excluded because her oxidative stress (corrected for creatinine)

was over 3 standard deviations higher than the mean (83 ng/mg creatinine).

Alternative explanations. We examined several other variables to help rule out alterna-

tive explanations for any relationships we found between pathogen avoidance motivation and

oxidative stress. These included pregnancy status, age, childhood and current SES, number of

children, and relationship status. Childhood and current SES were measured using established

three-item scales [34].

Results

First, we examined whether our key measures–oxidative stress and trait pathogen avoidance

motivation (GA)–differed between pregnant and non-pregnant women. See Table 3 for

descriptive statistics. No significant differences were found between pregnant and non-preg-

nant women in oxidative stress, t(133.79) = -.41, p = .68, or GA, t(163) = .93, p = .35, or PI, t
(163) = -.78, p = .44.
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To test whether trait levels of pathogen avoidance motivation predicted lower oxidative

stress, we regressed oxidative stress levels (corrected for creatinine) onto GA, PI, and preg-

nancy status (dummy-coded such that non-pregnant women were coded as ‘0’ and pregnant

women were coded as ‘1’). PI was added into the model to examine–as we did in our first

study–whether one’s perceived susceptibility to illness produced a pattern of results similar to

that of trait pathogen avoidance motivation. Pregnancy status was added to the model to deter-

mine whether pregnancy moderated the relationship between GA and oxidative stress. As pre-

dicted, higher trait levels of pathogen avoidance motivation were associated with less oxidative

stress, b = -.65, SE = .20, t(161) = -3.24, p = .001, 95% CI [-1.04, -0.25], semi-partial r = -.25.

There was no main effect of PI, b = .10, SE = .16, t(161) = 0.66, p = .513, 95% CI [-0.21, 0.42],

semi-partial r = .05, or participant pregnancy status, b = .28, SE = .42, t(161) = 0.66, p = .508,

95% CI [-0.55, 1.11], semi-partial r = .05, on oxidative stress. The association between GA and

oxidative stress was not moderated by pregnancy status, t(160) = -0.38, p = .703. See S1 Fig for

scatterplots separated by pregnancy status.

The association between GA and oxidative stress remained significant with the addition of

covariates, including age, childhood SES, current SES, number of children, and relationship

status, b = -0.69, SE = .20, t(152) = -3.44, p = .001, 95% CI [-1.08, -0.29], semi-partial r = -.26.

There was a trend for age to positively predict oxidative stress levels, but it did not reach signif-

icance, b = .08, SE = .05, t(152) = 1.73, p = .086, 95% CI [-0.01, 0.17], semi-partial r = .13. Nota-

bly, women who reported having more biological children had lower oxidative stress than

women who had fewer biological children, b = -.56, SE = .26, t(152) = -2.15, p = .033, 95% CI

[-1.08, -0.05], semi-partial r = -.17. Neither childhood SES, current SES, or relationship status

was associated with oxidative stress (all p’s> .25).

Discussion

These studies provide evidence of a novel benefit afforded by the BIS. Specifically, we showed

that pathogen avoidance motivation may promote health and longevity by allowing for lower

levels of non-targeted inflammation without an increase in infection risk. In Study 1, people

with higher trait levels of pathogen avoidance motivation had lower plasma IL-6 (in vivo mea-

sure) and less spontaneous in vitro proinflammatory cytokine release (i.e., IL-1β, IL-6, and

TNF-α). In the case of IL-1β, we also found less release across immune stimulation contexts.

Further, trait levels of pathogen avoidance motivation predicted neither a) self-reported his-

tory of infectious illnesses nor b) IL-6 and TNF-α release in response to immune stimulation,

suggesting that diminished levels of inflammatory activity do not come at the expense of

increased vulnerability to infection.

These results also provide preliminary evidence that the BIS allows for infection avoidance

without the physiological costs associated with elevated basal inflammation. Indeed, pathogen

avoidance motivation was negatively related to chronic disease history (e.g., heart disease and

diabetes) and positively associated with expected longevity. The potential longevity-promoting

features of the BIS were echoed in the results of Study 2, which found a link between trait

Table 3. Descriptive statistics for Study 2 (N = 165).

Pregnant (n = 71) Non-Pregnant (n = 94) Overall

Measures M (SD) M (SD) M (SD)

Germ Aversion 4.18 (1.06) 4.05 (1.04) 4.11 (1.05)

Perceived Infectability 3.29 (1.33) 3.48 (1.32) 3.40 (1.32)

Oxidative Stress (in ng/mg) of creatinine 5.67 (3.01) 5.49 (2.49) 5.57 (2.72)

https://doi.org/10.1371/journal.pone.0203961.t003
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pathogen avoidance motivation and protection from DNA damage. Participants more moti-

vated to avoid pathogens had less oxidative stress, suggesting that the BIS may play a key role

in minimizing chronic exposure to inflammation and associated somatic damage. Taken

together, these results support the hypothesis that the BIS works alongside the physiological

immune system to promote health.

Limitations and future directions

In considering these findings, one must take into account several key limitations. For example,

measuring markers of immune function or oxidative stress in human participants requires eas-

ily and non-invasively obtained measures, usually allowing for collection of only small

amounts of biological samples. Thus, we measured a limited number of relevant immunologi-

cal endpoints. Future work might extend the results of the current research by examining rela-

tionships between pathogen avoidance motivation and additional domains of immune

function, such as markers of adaptive immunity (e.g., antibody production). Further, the

majority of participants in our study were college students who have limited contact with path-

ogens in their environment. Although our results suggest that pathogen avoidance behaviors

lead to lower basal inflammation in the context of a relatively sanitary college campus, such a

link may not be found when an individual is unable to control pathogen exposure behaviorally.

Moreover, in an environment where pathogen exposure is not controllable, downregulating

inflammatory activity–which generally increases vulnerability to infection–may even prove

dangerous. Future work is needed to determine the role one’s control over pathogen exposure

plays in regulating trade-offs between BIS activity and the physiological immune system.

It should also be noted that because measures of oxidative stress and inflammation were

obtained in separate studies, we are unable to definitively determine whether the lower levels

of oxidative stress found in participants with higher pathogen avoidance motivation (com-

pared to those with lower pathogen avoidance motivation; Study 2) were due to lower levels of

basal inflammation in these individuals (Study 1). However, such an interpretation is consis-

tent with the pattern of our results, as well as with previous research which finds that inflam-

mation is a key driver of oxidative stress [3–4]. Future work is needed to address this

limitation and extend the findings of the current research. A prospective study–in which

inflammation, oxidative stress, and health outcomes are tracked over time in a group of indi-

viduals with high and low pathogen avoidance motivation–seems well-suited for this purpose.

Such a study might also lend insight into the biological relevance of the differences in basal

inflammation and oxidative stress found in the current research.

The present findings also contribute more generally to research which suggests that unsti-

mulated (i.e., spontaneous) in vitro cytokine release is an important measure to consider for

those exploring relationships between inflammation, psychology, and health. Previous

research has found, for example, that unstimulated proinflammatory cytokine release by

PBMCs is a strong predictor of the magnitude of one’s reported symptoms during an illness

[41]. Others find that post-traumatic stress disorder is associated with greater unstimulated–

but not stimulated–release of proinflammatory cytokines by PBMCs [42]. Although these and

other lines of research have demonstrated the utility of using unstimulated in vitro proinflam-

matory cytokine release as a measure of basal inflammatory activity [31], relationships between

unstimulated cytokine release and other key variables are often left unexamined in many stud-

ies. Instead, unstimulated cytokine release values are either (a) not measured [43], (b) only

controlled for [44], or (c) are subtracted from stimulated cytokine release values in order to

estimate a stimulated release change score [45]. Although the latter two techniques may pro-

vide useful indices of a population of cells’ (e.g., PBMCs’) reactivity to overt immunological
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stimulation, failure to also consider unstimulated cytokine release as an individual variable

may lead to the loss of critical information about the functioning of one’s cells at baseline.

Thus, one’s research question should be carefully considered before a data analysis plan for in
vitro cytokine release data is determined.

Taken together, this set of findings provides important new data that buttress the functional

importance of the BIS in managing one’s risk of infection and one’s general health. Indeed, in

addition to the more obvious roles it plays in coordinating cognitions and behaviors that pre-

vent exposure to pathogens, these new data indicate a novel and important role for the BIS in

potentially obviating the need for elevated basal levels of inflammation without increasing the

risk of infection. Accordingly, the BIS may play a role in helping curb inflammation’s costly

metabolic toll and oxidative sequelae.
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38. Griskevicius V, Ackerman JM, Cantú SM, Delton AW, Robertson TE, Simpson JA, et al. When the econ-

omy falters, do people spend or save? Responses to resource scarcity depend on childhood environ-

ments. Psychol Sci. 2012; 24:197–205.

39. Dalle-Donne I, Rossi R, Colombo R, Giustarini D, Milzani A. Biomarkers of oxidative damage in human

disease. Clin Chem. 2006; 52:601–623. https://doi.org/10.1373/clinchem.2005.061408 PMID:

16484333

40. Valavanidis A, Vlachogianni T, Fiotakis C. 8-hydroxy-20-deoxyguanosine (8-OHdG): a critical biomarker

of oxidative stress and carcinogenesis. J Environ Sci Health C 2009; 27:120–139.

41. Vollmer-Conna U, Fazou C, Cameron B, Li H, Brennan C, Luck L, et al. Production of pro-inflammatory

cytokines correlates with the symptoms of acute sickness behaviour in humans. Psychol Med, 2004;

34:1289–1297. PMID: 15697055

42. Gola H, Engler H, Sommershof A, Adenauer H, Kolassa S, Schedlowski M, et al. Posttraumatic stress

disorder is associated with an enhanced spontaneous production of pro-inflammatory cytokines by

peripheral blood mononuclear cells. BMC Psychiatry 2013; 13:40. https://doi.org/10.1186/1471-244X-

13-40 PMID: 23360282

43. Schaller M, Miller GE, Gervais WM, Yager S, Chen E. Mere visual perception of other people’s disease

symptoms facilitates a more aggressive immune response. Psychol Sci 2010; 21:649–652. https://doi.

org/10.1177/0956797610368064 PMID: 20483842

44. Jaremka LM, Fagundes CP, Peng J, Bennett JM, Glaser R, Malarkey WB, et al. Loneliness promotes

inflammation during acute stress. Psychol Sci 2013; 24:1089–1097. https://doi.org/10.1177/

0956797612464059 PMID: 23630220

45. Gill J, Vythilingam M, Page GG. Low cortisol, high DHEA, and high levels of stimulated TNF-α, and IL-6

in women with PTSD. J Trauma Stress 2008; 21:530–539. https://doi.org/10.1002/jts.20372 PMID:

19107725

The behavioral immune system and basal inflammation

PLOS ONE | https://doi.org/10.1371/journal.pone.0203961 September 20, 2018 16 / 16

http://www.ncbi.nlm.nih.gov/pubmed/6668417
https://doi.org/10.1373/clinchem.2005.061408
http://www.ncbi.nlm.nih.gov/pubmed/16484333
http://www.ncbi.nlm.nih.gov/pubmed/15697055
https://doi.org/10.1186/1471-244X-13-40
https://doi.org/10.1186/1471-244X-13-40
http://www.ncbi.nlm.nih.gov/pubmed/23360282
https://doi.org/10.1177/0956797610368064
https://doi.org/10.1177/0956797610368064
http://www.ncbi.nlm.nih.gov/pubmed/20483842
https://doi.org/10.1177/0956797612464059
https://doi.org/10.1177/0956797612464059
http://www.ncbi.nlm.nih.gov/pubmed/23630220
https://doi.org/10.1002/jts.20372
http://www.ncbi.nlm.nih.gov/pubmed/19107725
https://doi.org/10.1371/journal.pone.0203961

